增加日志进程等信息采集

This commit is contained in:
Alex Yang
2025-12-04 16:29:05 +08:00
parent 1a80c5acb8
commit 057a2ea9ee
15 changed files with 2090 additions and 379 deletions

Binary file not shown.

View File

@@ -1,9 +1,9 @@
{
"server_url": "http://localhost:8080/api",
"id": "yunc",
"name": "cloud",
"device_id": "yunc",
"token": "f1dee2c8ffbdd4974af84b92a254892b",
"server_url": "http://10.35.10.12:8080/api",
"id": "agent-fnos1",
"name": "fnos1",
"device_id": "agent-fnos1",
"token": "eea3ffc9b3bb6b2a9f2e5bf228a2c7db",
"interval": "10s",
"debug": true,
"api_port": 8081

23
agent/config.json Normal file
View File

@@ -0,0 +1,23 @@
{
"server": {
"port": 8080
},
"influxdb": {
"url": "http://localhost:8086",
"token": "",
"org": "monitor",
"bucket": "monitor",
"username": "",
"password": ""
},
"db": {
"type": "mysql",
"host": "localhost",
"port": 3306,
"username": "root",
"password": "",
"database": "monitor",
"ssl_mode": "disable",
"charset": "utf8mb4"
}
}

View File

@@ -5,8 +5,10 @@ import (
"encoding/json"
"fmt"
"log"
stdnet "net"
"net/http"
"os"
"sort"
"strconv"
"sync"
"time"
@@ -15,6 +17,7 @@ import (
"github.com/shirou/gopsutil/disk"
"github.com/shirou/gopsutil/mem"
"github.com/shirou/gopsutil/net"
"github.com/shirou/gopsutil/process"
)
// Config Agent配置
@@ -43,13 +46,56 @@ type DiskMetrics struct {
Total uint64 `json:"total"` // 总容量 (bytes)
}
// ProcessMetrics 进程监控指标
type ProcessMetrics struct {
Name string `json:"name"` // 进程名
Username string `json:"username"` // 用户名
PID int32 `json:"pid"` // 进程ID
CPU float64 `json:"cpu"` // CPU使用率
Memory float64 `json:"memory"` // 内存使用率
Path string `json:"path"` // 路径
Cmdline string `json:"cmdline"` // 命令行
Ports []int `json:"ports"` // 占用端口
}
// DiskDetailMetrics 磁盘详细信息
type DiskDetailMetrics struct {
DeviceID string `json:"device_id"` // 设备ID
Status string `json:"status"` // 设备状态
Type string `json:"type"` // 设备类型
SizeGB float64 `json:"size_gb"` // 设备大小(GB)
Model string `json:"model"` // 设备型号
InterfaceType string `json:"interface_type"` // 接口类型
Description string `json:"description"` // 设备描述
}
// LogEntry 系统日志条目
type LogEntry struct {
Sequence int `json:"sequence"` // 日志序号
Source string `json:"source"` // 来源
Time time.Time `json:"time"` // 发生时间
Message string `json:"message"` // 内容
}
// Metrics 监控指标
type Metrics struct {
CPU float64 `json:"cpu"`
CPUHz float64 `json:"cpu_hz"` // CPU频率 (MHz)
Memory float64 `json:"memory"`
Disk map[string]DiskMetrics `json:"disk"`
Network map[string]NetworkInterfaceMetrics `json:"network"`
CPU float64 `json:"cpu"`
CPUHz float64 `json:"cpu_hz"` // CPU频率 (MHz)
Memory float64 `json:"memory"`
Disk map[string]DiskMetrics `json:"disk"`
DiskDetails []DiskDetailMetrics `json:"disk_details"` // 磁盘详细信息
Network map[string]NetworkInterfaceMetrics `json:"network"`
Processes []ProcessMetrics `json:"processes"` // 进程信息
Logs []LogEntry `json:"logs"` // 系统日志
RxTotal uint64 `json:"rx_total"` // 所有网卡累计接收字节数总和
TxTotal uint64 `json:"tx_total"` // 所有网卡累计发送字节数总和
RxRate uint64 `json:"rx_rate"` // 所有网卡实时接收速率总和 (bytes/s)
TxRate uint64 `json:"tx_rate"` // 所有网卡实时发送速率总和 (bytes/s)
// 设备信息字段
DeviceID string `json:"device_id"` // 设备ID
AgentID string `json:"agent_id"` // Agent唯一标识
Name string `json:"name"` // 设备名称
IP string `json:"ip"` // 设备IP地址
}
// 全局配置
@@ -78,6 +124,60 @@ func init() {
metricsBuffer = make([]*Metrics, 0)
}
// getLocalIP 获取本机IP地址
func getLocalIP() string {
// 获取所有网络接口
interfaces, err := stdnet.Interfaces()
if err != nil {
log.Printf("Failed to get network interfaces: %v", err)
return ""
}
// 遍历网络接口查找非回环、UP状态的IP
for _, iface := range interfaces {
// 跳过回环接口和非UP状态的接口
if iface.Flags&stdnet.FlagLoopback != 0 || iface.Flags&stdnet.FlagUp == 0 {
continue
}
// 获取接口的IP地址
addresses, err := iface.Addrs()
if err != nil {
log.Printf("Failed to get addresses for interface %s: %v", iface.Name, err)
continue
}
// 遍历地址并返回IPv4地址
for _, addr := range addresses {
var ip stdnet.IP
switch v := addr.(type) {
case *stdnet.IPNet:
ip = v.IP
case *stdnet.IPAddr:
ip = v.IP
}
// 跳过IPv6地址和回环地址
if ip == nil || ip.IsLoopback() || ip.To4() == nil {
continue
}
return ip.String()
}
}
// 如果找不到合适的IP尝试另一种方法
conn, err := stdnet.Dial("udp", "8.8.8.8:80")
if err != nil {
log.Printf("Failed to dial UDP: %v", err)
return ""
}
defer conn.Close()
localAddr := conn.LocalAddr().(*stdnet.UDPAddr)
return localAddr.IP.String()
}
// 初始化配置
func initConfig() {
// 默认配置
@@ -353,25 +453,27 @@ func collectDisk() (map[string]DiskMetrics, error) {
}
// 采集网络流量
func collectNetwork() (map[string]NetworkInterfaceMetrics, error) {
func collectNetwork() (map[string]NetworkInterfaceMetrics, uint64, uint64, uint64, uint64, error) {
// 获取所有网卡的统计数据
ioCounters, err := net.IOCounters(true)
if err != nil {
return nil, err
// 当获取网卡数据失败时返回空map和0值
return make(map[string]NetworkInterfaceMetrics), 0, 0, 0, 0, nil
}
if len(ioCounters) == 0 {
return make(map[string]NetworkInterfaceMetrics), nil
}
// 初始化返回值
networkMetrics := make(map[string]NetworkInterfaceMetrics)
var totalRxBytes, totalTxBytes, totalRxRate, totalTxRate uint64
// 获取当前时间
currentTime := time.Now()
// 初始化返回值
networkMetrics := make(map[string]NetworkInterfaceMetrics)
// 遍历所有网卡
for _, counter := range ioCounters {
// 跳过空名称的网卡
if counter.Name == "" {
continue
}
// 获取当前网卡的累计流量
currentBytesSent := counter.BytesSent
currentBytesReceived := counter.BytesRecv
@@ -409,23 +511,265 @@ func collectNetwork() (map[string]NetworkInterfaceMetrics, error) {
TxBytes: currentBytesSent,
RxBytes: currentBytesReceived,
}
// 累加总流量
totalRxBytes += currentBytesReceived
totalTxBytes += currentBytesSent
totalRxRate += bytesReceivedRate
totalTxRate += bytesSentRate
}
// 更新上一次采集时间
lastCollectTime = currentTime
// 返回所有网卡的速率和累计流量
return networkMetrics, nil
// 返回所有网卡的速率和累计流量,以及总和
return networkMetrics, totalRxBytes, totalTxBytes, totalRxRate, totalTxRate, nil
}
// 采集所有监控指标
// 采集进程信息返回CPU使用率较高的前N个进程
func collectProcessMetrics() ([]ProcessMetrics, error) {
// 只采集CPU使用率较高的前20个进程避免性能问题
const maxProcesses = 20
// 获取所有进程ID
pids, err := process.Pids()
if err != nil {
return nil, fmt.Errorf("failed to get process IDs: %w", err)
}
// 创建进程信息切片
processes := make([]ProcessMetrics, 0, maxProcesses)
// 用于并发采集进程信息
var wg sync.WaitGroup
var mu sync.Mutex
errCh := make(chan error, len(pids))
// 限制并发数量
concurrencyLimit := 10
semaphore := make(chan struct{}, concurrencyLimit)
for _, pid := range pids {
wg.Add(1)
// 控制并发数量
semaphore <- struct{}{}
go func(pid int32) {
defer wg.Done()
defer func() { <-semaphore }()
// 获取进程信息
p, err := process.NewProcess(pid)
if err != nil {
errCh <- nil // 忽略无法访问的进程
return
}
// 获取进程名
name, err := p.Name()
if err != nil {
errCh <- nil
return
}
// 获取用户名
username := ""
if uids, err := p.Uids(); err == nil && len(uids) > 0 {
// 简单实现实际需要映射UID到用户名
username = strconv.Itoa(int(uids[0]))
}
// 获取CPU使用率
cpuPercent, err := p.CPUPercent()
if err != nil {
errCh <- nil
return
}
// 获取内存使用率
memInfo, err := p.MemoryInfo()
if err != nil {
errCh <- nil
return
}
// 获取系统总内存
vmStat, err := mem.VirtualMemory()
if err != nil {
errCh <- nil
return
}
// 计算内存使用率百分比
memPercent := float64(memInfo.RSS) / float64(vmStat.Total) * 100
// 获取进程路径
path, err := p.Exe()
if err != nil {
path = ""
}
// 获取命令行
cmdline, err := p.Cmdline()
if err != nil {
cmdline = ""
}
// 获取占用端口
ports := []int{}
if connections, err := p.Connections(); err == nil {
for _, conn := range connections {
// 只添加监听或已建立连接的端口
if conn.Status == "LISTEN" || conn.Status == "ESTABLISHED" {
ports = append(ports, int(conn.Laddr.Port))
}
}
}
// 创建进程信息
procMetric := ProcessMetrics{
Name: name,
Username: username,
PID: pid,
CPU: cpuPercent,
Memory: memPercent,
Path: path,
Cmdline: cmdline,
Ports: ports,
}
// 添加到切片
mu.Lock()
processes = append(processes, procMetric)
mu.Unlock()
errCh <- nil
}(pid)
}
// 等待所有goroutine完成
wg.Wait()
close(errCh)
// 检查是否有错误
for err := range errCh {
if err != nil {
log.Printf("Warning: failed to collect process info: %v", err)
}
}
// 根据CPU使用率排序取前N个
sort.Slice(processes, func(i, j int) bool {
return processes[i].CPU > processes[j].CPU
})
// 限制返回的进程数量
if len(processes) > maxProcesses {
processes = processes[:maxProcesses]
}
return processes, nil
}
// 采集磁盘详细信息
func collectDiskDetails() ([]DiskDetailMetrics, error) {
// 获取所有挂载点信息
partitions, err := disk.Partitions(false)
if err != nil {
return nil, fmt.Errorf("failed to get disk partitions: %w", err)
}
// 创建磁盘详细信息切片
diskDetails := make([]DiskDetailMetrics, 0, len(partitions))
for _, partition := range partitions {
// 获取磁盘使用情况
usage, err := disk.Usage(partition.Mountpoint)
if err != nil {
continue // 忽略无法访问的分区
}
// 简单实现获取设备ID
deviceID := partition.Device
if len(deviceID) > 0 && deviceID[0] == '/' {
deviceID = deviceID[1:]
}
// 设备状态
status := "online"
// 设备类型
diskType := "unknown"
if partition.Fstype != "" {
diskType = partition.Fstype
}
// 设备大小(GB)
sizeGB := float64(usage.Total) / (1024 * 1024 * 1024)
// 设备型号 - 简化实现,实际需要更复杂的逻辑
model := partition.Device
// 接口类型 - 简化实现
interfaceType := "unknown"
if len(partition.Device) > 0 {
if partition.Device[:3] == "sda" || partition.Device[:3] == "sdb" {
interfaceType = "SATA"
} else if partition.Device[:3] == "nvme" {
interfaceType = "NVMe"
} else if partition.Device[:3] == "mmc" {
interfaceType = "MMC"
} else if partition.Device[:3] == "vda" || partition.Device[:3] == "vdb" {
interfaceType = "Virtual"
}
}
// 设备描述
description := fmt.Sprintf("%s (%s)", partition.Device, partition.Fstype)
// 创建磁盘详细信息
diskDetail := DiskDetailMetrics{
DeviceID: deviceID,
Status: status,
Type: diskType,
SizeGB: sizeGB,
Model: model,
InterfaceType: interfaceType,
Description: description,
}
diskDetails = append(diskDetails, diskDetail)
}
return diskDetails, nil
}
func collectMetrics() (*Metrics, error) {
metrics := &Metrics{}
// 初始化Network字段为非nil避免空指针问题
metrics.Network = make(map[string]NetworkInterfaceMetrics)
// 设置设备信息
deviceID := config.DeviceID
if deviceID == "" {
deviceID = config.ID
}
metrics.DeviceID = deviceID
metrics.AgentID = config.ID
metrics.Name = config.Name
// 尝试获取本机IP地址
metrics.IP = getLocalIP()
// 采集CPU使用率和频率
cpuUsage, cpuHz, err := collectCPU()
if err != nil {
return nil, fmt.Errorf("failed to collect CPU metrics: %w", err)
// CPU采集失败时使用0值
log.Printf("Failed to collect CPU metrics: %v, using 0 values", err)
cpuUsage = 0
cpuHz = 0
}
metrics.CPU = cpuUsage
metrics.CPUHz = cpuHz
@@ -433,24 +777,53 @@ func collectMetrics() (*Metrics, error) {
// 采集内存使用率
memoryUsage, err := collectMemory()
if err != nil {
return nil, fmt.Errorf("failed to collect memory metrics: %w", err)
// 内存采集失败时使用0值
log.Printf("Failed to collect memory metrics: %v, using 0 value", err)
memoryUsage = 0
}
metrics.Memory = memoryUsage
// 采集磁盘使用率和总容量
diskMetricsMap, err := collectDisk()
if err != nil {
return nil, fmt.Errorf("failed to collect disk metrics: %w", err)
// 磁盘采集失败时使用空map
log.Printf("Failed to collect disk metrics: %v, using empty map", err)
diskMetricsMap = make(map[string]DiskMetrics)
}
metrics.Disk = diskMetricsMap
// 采集网络流量
networkMetrics, err := collectNetwork()
// 采集磁盘详细信息
diskDetails, err := collectDiskDetails()
if err != nil {
return nil, fmt.Errorf("failed to collect network metrics: %w", err)
// 磁盘详细信息采集失败时使用空切片
log.Printf("Failed to collect disk details: %v, using empty slice", err)
diskDetails = make([]DiskDetailMetrics, 0)
}
metrics.DiskDetails = diskDetails
// 采集进程信息
processes, err := collectProcessMetrics()
if err != nil {
// 进程信息采集失败时使用空切片
log.Printf("Failed to collect process metrics: %v, using empty slice", err)
processes = make([]ProcessMetrics, 0)
}
metrics.Processes = processes
// 采集网络流量
networkMetrics, rxTotal, txTotal, rxRate, txRate, err := collectNetwork()
if err != nil {
// 网络采集失败时使用0值实际上collectNetwork已经处理了错误情况
log.Printf("Failed to collect network metrics: %v, using 0 values", err)
networkMetrics = make(map[string]NetworkInterfaceMetrics)
rxTotal, txTotal, rxRate, txRate = 0, 0, 0, 0
}
// 直接使用采集到的网卡流量
metrics.Network = networkMetrics
metrics.RxTotal = rxTotal
metrics.TxTotal = txTotal
metrics.RxRate = rxRate
metrics.TxRate = txRate
return metrics, nil
}

BIN
backend/backend Executable file

Binary file not shown.

View File

@@ -3,7 +3,7 @@
"port": 8080
},
"influxdb": {
"url": "http://10.35.10.130:8066",
"url": "http://10.35.10.70:8066",
"token": "aVI5qMGz6e8d4pfyhVZNYfS5we7C8Bb-5bi-V7LpL3K6CmQyudauigoxDFv1UFo2Hvda7swKEqTe8eP6xy4jBw==",
"org": "AMAZEHOME",
"bucket": "AMAZEHOME",

View File

@@ -41,6 +41,8 @@ func RegisterRoutes(r *gin.Engine) {
metrics.GET("/memory", GetMemoryMetrics)
metrics.GET("/disk", GetDiskMetrics)
metrics.GET("/network", GetNetworkMetrics)
metrics.GET("/processes", GetProcessMetrics) // 添加进程信息查询端点
metrics.GET("/disk_details", GetDiskDetails) // 添加磁盘详细信息查询端点
// 添加POST端点接收Agent发送的指标数据
metrics.POST("/", HandleMetricsPost)
}
@@ -73,6 +75,29 @@ type DiskMetrics struct {
Total uint64 `json:"total"` // 总容量 (bytes)
}
// ProcessMetrics 进程监控指标
type ProcessMetrics struct {
Name string `json:"name"` // 进程名
Username string `json:"username"` // 用户名
PID int32 `json:"pid"` // 进程ID
CPU float64 `json:"cpu"` // CPU使用率
Memory float64 `json:"memory"` // 内存使用率
Path string `json:"path"` // 路径
Cmdline string `json:"cmdline"` // 命令行
Ports []int `json:"ports"` // 占用端口
}
// DiskDetailMetrics 磁盘详细信息
type DiskDetailMetrics struct {
DeviceID string `json:"device_id"` // 设备ID
Status string `json:"status"` // 设备状态
Type string `json:"type"` // 设备类型
SizeGB float64 `json:"size_gb"` // 设备大小(GB)
Model string `json:"model"` // 设备型号
InterfaceType string `json:"interface_type"` // 接口类型
Description string `json:"description"` // 设备描述
}
// NetworkInterfaceMetrics 网卡监控指标
type NetworkInterfaceMetrics struct {
BytesSent uint64 `json:"bytes_sent"` // 发送速率 (bytes/s)
@@ -83,11 +108,17 @@ type NetworkInterfaceMetrics struct {
// MetricsRequest 指标请求结构
type MetricsRequest struct {
CPU float64 `json:"cpu"`
CPUHz float64 `json:"cpu_hz"` // CPU频率 (MHz)
Memory float64 `json:"memory"`
Disk map[string]DiskMetrics `json:"disk"`
Network map[string]NetworkInterfaceMetrics `json:"network"`
CPU float64 `json:"cpu"`
CPUHz float64 `json:"cpu_hz"` // CPU频率 (MHz)
Memory float64 `json:"memory"`
Disk map[string]DiskMetrics `json:"disk"`
DiskDetails []DiskDetailMetrics `json:"disk_details"` // 磁盘详细信息
Network map[string]NetworkInterfaceMetrics `json:"network"`
Processes []ProcessMetrics `json:"processes"` // 进程信息
RxTotal uint64 `json:"rx_total"` // 所有网卡累计接收字节数总和
TxTotal uint64 `json:"tx_total"` // 所有网卡累计发送字节数总和
RxRate uint64 `json:"rx_rate"` // 所有网卡实时接收速率总和 (bytes/s)
TxRate uint64 `json:"tx_rate"` // 所有网卡实时发送速率总和 (bytes/s)
}
// HandleMetricsPost 处理Agent发送的指标数据
@@ -162,24 +193,28 @@ func HandleMetricsPost(c *gin.Context) {
metricsList = append(metricsList, singleMetric)
}
// 创建单独的上下文用于InfluxDB写入避免HTTP请求结束时上下文被取消
writeCtx, cancel := context.WithTimeout(context.Background(), 10*time.Second)
defer cancel()
// 处理所有指标
for i, req := range metricsList {
// 写入CPU使用率指标
if err := globalStorage.WriteMetric(c.Request.Context(), deviceID, "cpu", req.CPU, baseTags); err != nil {
if err := globalStorage.WriteMetric(writeCtx, deviceID, "cpu", req.CPU, baseTags); err != nil {
// 只记录警告,不影响后续指标处理
log.Printf("Warning: Failed to write CPU metrics: %v", err)
}
// 写入CPU频率指标如果有
if req.CPUHz > 0 {
if err := globalStorage.WriteMetric(c.Request.Context(), deviceID, "cpu_hz", req.CPUHz, baseTags); err != nil {
if err := globalStorage.WriteMetric(writeCtx, deviceID, "cpu_hz", req.CPUHz, baseTags); err != nil {
// 只记录警告,不影响后续指标处理
log.Printf("Warning: Failed to write CPU Hz metrics: %v", err)
}
}
// 写入内存指标
if err := globalStorage.WriteMetric(c.Request.Context(), deviceID, "memory", req.Memory, baseTags); err != nil {
if err := globalStorage.WriteMetric(writeCtx, deviceID, "memory", req.Memory, baseTags); err != nil {
// 只记录警告,不影响后续指标处理
log.Printf("Warning: Failed to write memory metrics: %v", err)
}
@@ -196,7 +231,7 @@ func HandleMetricsPost(c *gin.Context) {
tags["mountpoint"] = mountpoint
// 写入磁盘使用率指标
if err := globalStorage.WriteMetric(c.Request.Context(), deviceID, "disk", diskMetrics.UsedPercent, tags); err != nil {
if err := globalStorage.WriteMetric(writeCtx, deviceID, "disk", diskMetrics.UsedPercent, tags); err != nil {
// 只记录警告,不影响后续指标处理
log.Printf("Warning: Failed to write disk metrics for mountpoint %s: %v", mountpoint, err)
}
@@ -206,6 +241,10 @@ func HandleMetricsPost(c *gin.Context) {
var totalBytesSent, totalBytesReceived uint64
var totalTxBytes, totalRxBytes uint64 // 累计总流量
for interfaceName, networkMetrics := range req.Network {
// 跳过空名称的网卡
if interfaceName == "" {
continue
}
// 为每个网卡创建标签,包含基础标签和网卡名称
interfaceTags := make(map[string]string)
// 复制基础标签
@@ -216,25 +255,25 @@ func HandleMetricsPost(c *gin.Context) {
interfaceTags["interface"] = interfaceName
// 写入网络发送速率指标
if err := globalStorage.WriteMetric(c.Request.Context(), deviceID, "network_sent", float64(networkMetrics.BytesSent), interfaceTags); err != nil {
if err := globalStorage.WriteMetric(writeCtx, deviceID, "network_sent", float64(networkMetrics.BytesSent), interfaceTags); err != nil {
// 只记录警告,不影响后续指标处理
log.Printf("Warning: Failed to write network sent metrics for interface %s: %v", interfaceName, err)
}
// 写入网络接收速率指标
if err := globalStorage.WriteMetric(c.Request.Context(), deviceID, "network_received", float64(networkMetrics.BytesReceived), interfaceTags); err != nil {
if err := globalStorage.WriteMetric(writeCtx, deviceID, "network_received", float64(networkMetrics.BytesReceived), interfaceTags); err != nil {
// 只记录警告,不影响后续指标处理
log.Printf("Warning: Failed to write network received metrics for interface %s: %v", interfaceName, err)
}
// 写入累计发送字节数指标
if err := globalStorage.WriteMetric(c.Request.Context(), deviceID, "network_tx_bytes", float64(networkMetrics.TxBytes), interfaceTags); err != nil {
if err := globalStorage.WriteMetric(writeCtx, deviceID, "network_tx_bytes", float64(networkMetrics.TxBytes), interfaceTags); err != nil {
// 只记录警告,不影响后续指标处理
log.Printf("Warning: Failed to write network tx_bytes metrics for interface %s: %v", interfaceName, err)
}
// 写入累计接收字节数指标
if err := globalStorage.WriteMetric(c.Request.Context(), deviceID, "network_rx_bytes", float64(networkMetrics.RxBytes), interfaceTags); err != nil {
if err := globalStorage.WriteMetric(writeCtx, deviceID, "network_rx_bytes", float64(networkMetrics.RxBytes), interfaceTags); err != nil {
// 只记录警告,不影响后续指标处理
log.Printf("Warning: Failed to write network rx_bytes metrics for interface %s: %v", interfaceName, err)
}
@@ -248,6 +287,22 @@ func HandleMetricsPost(c *gin.Context) {
totalRxBytes += networkMetrics.RxBytes
}
// 写入进程信息
for _, proc := range req.Processes {
if err := globalStorage.WriteProcessMetric(writeCtx, deviceID, proc.Name, proc.Username, proc.PID, proc.CPU, proc.Memory, proc.Path, proc.Cmdline, proc.Ports, baseTags); err != nil {
// 只记录警告,不影响后续指标处理
log.Printf("Warning: Failed to write process metrics for PID %d: %v", proc.PID, err)
}
}
// 写入磁盘详细信息
for _, diskDetail := range req.DiskDetails {
if err := globalStorage.WriteDiskDetailMetric(writeCtx, deviceID, diskDetail.DeviceID, diskDetail.Status, diskDetail.Type, diskDetail.SizeGB, diskDetail.Model, diskDetail.InterfaceType, diskDetail.Description, baseTags); err != nil {
// 只记录警告,不影响后续指标处理
log.Printf("Warning: Failed to write disk details for device %s: %v", diskDetail.DeviceID, err)
}
}
// 广播指标更新消息,只广播最后一个指标
if i == len(metricsList)-1 {
// 准备广播的磁盘使用率数据(兼容旧格式)
@@ -412,7 +467,7 @@ func GetCPUMetrics(c *gin.Context) {
}
// 处理数据传递interval、startTime和endTime参数
processedData := ProcessMetrics(points, aggregation, interval, startTime, endTime)
processedData := ProcessMetricData(points, aggregation, interval, startTime, endTime)
c.JSON(http.StatusOK, gin.H{
"data": processedData,
@@ -440,7 +495,7 @@ func GetMemoryMetrics(c *gin.Context) {
}
// 处理数据传递interval、startTime和endTime参数
processedData := ProcessMetrics(points, aggregation, interval, startTime, endTime)
processedData := ProcessMetricData(points, aggregation, interval, startTime, endTime)
c.JSON(http.StatusOK, gin.H{
"data": processedData,
@@ -481,7 +536,7 @@ func GetDiskMetrics(c *gin.Context) {
// 处理数据,为每个挂载点创建独立的数据集
result := make(map[string][]MetricData)
for mountpoint, mountpointPoints := range mountpointData {
processedData := ProcessMetrics(mountpointPoints, aggregation, interval, startTime, endTime)
processedData := ProcessMetricData(mountpointPoints, aggregation, interval, startTime, endTime)
result[mountpoint] = processedData
}
@@ -499,10 +554,14 @@ func GetNetworkMetrics(c *gin.Context) {
aggregation := c.DefaultQuery("aggregation", "average")
interval := c.DefaultQuery("interval", "10s") // 添加interval参数默认10秒
// 查询发送和接收的网络指标
// 查询发送和接收的网络速率指标
sentPoints, err1 := globalStorage.QueryMetrics(context.Background(), deviceID, "network_sent", startTime, endTime)
receivedPoints, err2 := globalStorage.QueryMetrics(context.Background(), deviceID, "network_received", startTime, endTime)
// 查询发送和接收的累积总流量指标
txBytesPoints, err3 := globalStorage.QueryMetrics(context.Background(), deviceID, "network_total_tx_bytes", startTime, endTime)
rxBytesPoints, err4 := globalStorage.QueryMetrics(context.Background(), deviceID, "network_total_rx_bytes", startTime, endTime)
// 处理错误
if err1 != nil {
log.Printf("Warning: Failed to query network sent metrics: %v", err1)
@@ -512,12 +571,24 @@ func GetNetworkMetrics(c *gin.Context) {
log.Printf("Warning: Failed to query network received metrics: %v", err2)
receivedPoints = []storage.MetricPoint{}
}
if err3 != nil {
log.Printf("Warning: Failed to query network_total_tx_bytes metrics: %v", err3)
txBytesPoints = []storage.MetricPoint{}
}
if err4 != nil {
log.Printf("Warning: Failed to query network_total_rx_bytes metrics: %v", err4)
rxBytesPoints = []storage.MetricPoint{}
}
// 按网卡名称分组发送和接收的指标
// 按网卡名称分组发送和接收的速率指标
sentByInterface := make(map[string][]storage.MetricPoint)
receivedByInterface := make(map[string][]storage.MetricPoint)
// 分组发送的网络指标
// 按网卡名称分组发送和接收的累积总流量指标
txBytesByInterface := make(map[string][]storage.MetricPoint)
rxBytesByInterface := make(map[string][]storage.MetricPoint)
// 分组发送的网络速率指标
for _, point := range sentPoints {
// 获取网卡名称,默认使用"all"表示所有网卡
interfaceName := point.Tags["interface"]
@@ -527,7 +598,7 @@ func GetNetworkMetrics(c *gin.Context) {
sentByInterface[interfaceName] = append(sentByInterface[interfaceName], point)
}
// 分组接收的网络指标
// 分组接收的网络速率指标
for _, point := range receivedPoints {
// 获取网卡名称,默认使用"all"表示所有网卡
interfaceName := point.Tags["interface"]
@@ -537,6 +608,26 @@ func GetNetworkMetrics(c *gin.Context) {
receivedByInterface[interfaceName] = append(receivedByInterface[interfaceName], point)
}
// 分组发送的累积总流量指标
for _, point := range txBytesPoints {
// 获取网卡名称,默认使用"all"表示所有网卡
interfaceName := point.Tags["interface"]
if interfaceName == "" {
interfaceName = "all"
}
txBytesByInterface[interfaceName] = append(txBytesByInterface[interfaceName], point)
}
// 分组接收的累积总流量指标
for _, point := range rxBytesPoints {
// 获取网卡名称,默认使用"all"表示所有网卡
interfaceName := point.Tags["interface"]
if interfaceName == "" {
interfaceName = "all"
}
rxBytesByInterface[interfaceName] = append(rxBytesByInterface[interfaceName], point)
}
// 处理数据,为每个网卡创建独立的数据集
result := make(map[string]map[string][]MetricData)
@@ -548,21 +639,37 @@ func GetNetworkMetrics(c *gin.Context) {
for iface := range receivedByInterface {
allInterfaces[iface] = true
}
for iface := range txBytesByInterface {
allInterfaces[iface] = true
}
for iface := range rxBytesByInterface {
allInterfaces[iface] = true
}
// 为每个网卡处理数据
for iface := range allInterfaces {
// 获取该网卡的发送和接收指标
// 获取该网卡的速率指标
ifaceSentPoints := sentByInterface[iface]
ifaceReceivedPoints := receivedByInterface[iface]
// 处理数据
processedSentData := ProcessMetrics(ifaceSentPoints, aggregation, interval, startTime, endTime)
processedReceivedData := ProcessMetrics(ifaceReceivedPoints, aggregation, interval, startTime, endTime)
// 获取该网卡的累积总流量指标
ifaceTxBytesPoints := txBytesByInterface[iface]
ifaceRxBytesPoints := rxBytesByInterface[iface]
// 处理速率数据
processedSentData := ProcessMetricData(ifaceSentPoints, aggregation, interval, startTime, endTime)
processedReceivedData := ProcessMetricData(ifaceReceivedPoints, aggregation, interval, startTime, endTime)
// 处理累积总流量数据
processedTxBytesData := ProcessMetricData(ifaceTxBytesPoints, aggregation, interval, startTime, endTime)
processedRxBytesData := ProcessMetricData(ifaceRxBytesPoints, aggregation, interval, startTime, endTime)
// 保存结果
result[iface] = map[string][]MetricData{
"sent": processedSentData,
"received": processedReceivedData,
"sent": processedSentData, // 发送速率数据
"received": processedReceivedData, // 接收速率数据
"tx_bytes": processedTxBytesData, // 发送累积总流量数据
"rx_bytes": processedRxBytesData, // 接收累积总流量数据
}
}
@@ -806,3 +913,49 @@ func GetAllDevices(c *gin.Context) {
"devices": devices,
})
}
// GetProcessMetrics 获取进程指标
func GetProcessMetrics(c *gin.Context) {
// 获取查询参数
deviceID := c.Query("device_id") // 不使用默认值,空值表示查询所有设备
startTime := c.DefaultQuery("start_time", "-1h")
endTime := c.DefaultQuery("end_time", "now()")
// 查询数据
processes, err := globalStorage.QueryProcessMetrics(context.Background(), deviceID, startTime, endTime)
if err != nil {
// 只记录警告,返回空数据
log.Printf("Warning: Failed to query process metrics: %v", err)
c.JSON(http.StatusOK, gin.H{
"data": []map[string]interface{}{},
})
return
}
c.JSON(http.StatusOK, gin.H{
"data": processes,
})
}
// GetDiskDetails 获取磁盘详细信息
func GetDiskDetails(c *gin.Context) {
// 获取查询参数
deviceID := c.Query("device_id") // 不使用默认值,空值表示查询所有设备
startTime := c.DefaultQuery("start_time", "-1h")
endTime := c.DefaultQuery("end_time", "now()")
// 查询数据
diskDetails, err := globalStorage.QueryDiskDetails(context.Background(), deviceID, startTime, endTime)
if err != nil {
// 只记录警告,返回空数据
log.Printf("Warning: Failed to query disk details: %v", err)
c.JSON(http.StatusOK, gin.H{
"data": []map[string]interface{}{},
})
return
}
c.JSON(http.StatusOK, gin.H{
"data": diskDetails,
})
}

View File

@@ -71,8 +71,8 @@ func FormatTimeByInterval(t time.Time, intervalSeconds int) string {
}
}
// ProcessMetrics 处理监控数据,支持动态时间区间
func ProcessMetrics(points []storage.MetricPoint, aggregation string, intervalStr string, startTime, endTime string) []MetricData {
// ProcessMetricData 处理监控数据,支持动态时间区间
func ProcessMetricData(points []storage.MetricPoint, aggregation string, intervalStr string, startTime, endTime string) []MetricData {
// 解析时间区间
intervalSeconds, err := ParseInterval(intervalStr)
if err != nil {

View File

@@ -2,7 +2,9 @@ package storage
import (
"context"
"fmt"
"log"
"math/rand"
"strings"
"time"
@@ -10,6 +12,28 @@ import (
"github.com/monitor/backend/config"
)
// formatTags 将标签映射格式化为InfluxDB行协议格式
func formatTags(tags map[string]string) string {
var tagList []string
for k, v := range tags {
// 跳过空值的标签避免InfluxDB解析错误
if v == "" {
continue
}
tagList = append(tagList, fmt.Sprintf("%s=%s", k, escapeTagValue(v)))
}
return strings.Join(tagList, ",")
}
// escapeTagValue 转义标签值中的特殊字符
func escapeTagValue(value string) string {
// 替换逗号、空格和等号为转义后的形式
escaped := strings.ReplaceAll(value, ",", "\\,")
escaped = strings.ReplaceAll(escaped, " ", "\\ ")
escaped = strings.ReplaceAll(escaped, "=", "\\=")
return escaped
}
// MetricPoint 自定义监控指标点
type MetricPoint struct {
Time time.Time `json:"time"`
@@ -39,8 +63,10 @@ func NewStorage(cfg *config.Config) *Storage {
client = influxdb2.NewClient(cfg.InfluxDB.URL, "")
}
// 配置InfluxDB客户端选项
options := client.Options()
// 禁用InfluxDB客户端的调试日志
client.Options().SetLogLevel(0)
options.SetLogLevel(0)
return &Storage{
client: client,
@@ -54,10 +80,70 @@ func (s *Storage) Close() {
s.client.Close()
}
// WriteMetric 写入监控指标
func (s *Storage) WriteMetric(ctx context.Context, deviceID, metricType string, value float64, tags map[string]string) error {
writeAPI := s.client.WriteAPIBlocking(s.org, s.bucket)
// 写入数据到InfluxDB带重试机制
func (s *Storage) writeData(ctx context.Context, measurement string, tags map[string]string, fields map[string]interface{}, deviceID, metricType string) error {
// 重试配置 - 减少重试次数和延迟,确保在超时时间内完成
maxRetries := 2
baseDelay := 200 * time.Millisecond
for i := 0; i <= maxRetries; i++ {
// 如果上下文已取消,直接返回
if ctx.Err() != nil {
return ctx.Err()
}
// 写入数据点
writeAPI := s.client.WriteAPIBlocking(s.org, s.bucket)
// 构建行协议字符串
var fieldList []string
for k, v := range fields {
var fieldStr string
// 根据字段类型格式化
switch v := v.(type) {
case string:
fieldStr = fmt.Sprintf("%s=%q", k, v)
case float64, int, int32, int64:
fieldStr = fmt.Sprintf("%s=%v", k, v)
case bool:
fieldStr = fmt.Sprintf("%s=%t", k, v)
default:
// 转换为字符串
fieldStr = fmt.Sprintf("%s=%q", k, fmt.Sprintf("%v", v))
}
fieldList = append(fieldList, fieldStr)
}
line := fmt.Sprintf("%s,%s %s %d", measurement, formatTags(tags), strings.Join(fieldList, ","), time.Now().UnixNano())
err := writeAPI.WriteRecord(ctx, line)
if err == nil {
// 写入成功,直接返回
return nil
}
// 如果是最后一次重试,返回错误
if i == maxRetries {
return err
}
// 计算重试延迟(指数退避)
delay := baseDelay*time.Duration(1<<i) + time.Duration(rand.Intn(50))*time.Millisecond
log.Printf("Warning: InfluxDB write failed for device %s, metric %s, retrying in %v... (Attempt %d/%d)\nError: %v", deviceID, metricType, delay, i+1, maxRetries, err)
// 等待重试
select {
case <-time.After(delay):
// 继续重试
case <-ctx.Done():
// 上下文取消,返回错误
return ctx.Err()
}
}
return nil
}
// WriteMetric 写入监控指标,带重试机制
func (s *Storage) WriteMetric(ctx context.Context, deviceID, metricType string, value float64, tags map[string]string) error {
// 创建标签映射,合并原有标签和新标签
allTags := make(map[string]string)
// 复制原有标签
@@ -69,18 +155,77 @@ func (s *Storage) WriteMetric(ctx context.Context, deviceID, metricType string,
// 添加指标类型标签
allTags["type"] = metricType
// 创建数据点
point := influxdb2.NewPoint(
"metrics",
allTags,
map[string]interface{}{
"value": value,
},
time.Now(),
)
// 创建字段映射
fields := map[string]interface{}{
"value": value,
}
// 写入数据点
return writeAPI.WritePoint(ctx, point)
// 使用新的writeData方法
return s.writeData(ctx, "metrics", allTags, fields, deviceID, metricType)
}
// WriteProcessMetric 写入进程指标
func (s *Storage) WriteProcessMetric(ctx context.Context, deviceID string, processName, username string, pid int32, cpu, memory float64, path, cmdline string, ports []int, tags map[string]string) error {
// 创建标签映射,合并原有标签和新标签
allTags := make(map[string]string)
// 复制原有标签
for k, v := range tags {
allTags[k] = v
}
// 添加设备ID标签
allTags["device_id"] = deviceID
// 添加进程相关标签
allTags["process_name"] = processName
allTags["username"] = username
allTags["pid"] = fmt.Sprintf("%d", pid)
// 处理端口标签只取前5个端口
portsStr := make([]string, 0, len(ports))
for i, port := range ports {
if i >= 5 {
break
}
portsStr = append(portsStr, fmt.Sprintf("%d", port))
}
allTags["ports"] = strings.Join(portsStr, ",")
// 创建字段映射
fields := map[string]interface{}{
"cpu_usage": cpu,
"memory_usage": memory,
"path": path,
"cmdline": cmdline,
}
// 使用新的writeData方法
return s.writeData(ctx, "processes", allTags, fields, deviceID, "process")
}
// WriteDiskDetailMetric 写入磁盘详细信息
func (s *Storage) WriteDiskDetailMetric(ctx context.Context, deviceID, diskDeviceID, status, diskType string, sizeGB float64, model, interfaceType, description string, tags map[string]string) error {
// 创建标签映射,合并原有标签和新标签
allTags := make(map[string]string)
// 复制原有标签
for k, v := range tags {
allTags[k] = v
}
// 添加设备ID标签
allTags["device_id"] = deviceID
// 添加磁盘相关标签
allTags["disk_id"] = diskDeviceID
allTags["status"] = status
allTags["type"] = diskType
allTags["model"] = model
allTags["interface_type"] = interfaceType
// 创建字段映射
fields := map[string]interface{}{
"size_gb": sizeGB,
"description": description,
}
// 使用新的writeData方法
return s.writeData(ctx, "disk_details", allTags, fields, deviceID, "disk_detail")
}
// QueryMetrics 查询监控指标
@@ -315,3 +460,132 @@ func (s *Storage) QueryDeviceStatus(ctx context.Context, deviceID string) (strin
return agentName, status, nil
}
// QueryProcessMetrics 查询进程指标
func (s *Storage) QueryProcessMetrics(ctx context.Context, deviceID string, startTime, endTime string) ([]map[string]interface{}, error) {
queryAPI := s.client.QueryAPI(s.org)
// 构建查询语句
query := `from(bucket: "` + s.bucket + `")
|> range(start: ` + startTime + `, stop: ` + endTime + `)
|> filter(fn: (r) => r["_measurement"] == "processes")`
// 如果指定了设备ID添加设备ID过滤
if deviceID != "" {
query += `
|> filter(fn: (r) => r["device_id"] == "` + deviceID + `")`
}
// 获取最新的进程数据
query += `
|> last()`
// 执行查询
queryResult, err := queryAPI.Query(ctx, query)
if err != nil {
return nil, err
}
defer queryResult.Close()
// 存储进程数据
processes := make([]map[string]interface{}, 0)
// 处理查询结果
for queryResult.Next() {
if queryResult.TableChanged() {
// 表结构变化,跳过
continue
}
// 获取记录
record := queryResult.Record()
// 构建进程数据
processData := map[string]interface{}{
"time": record.Time(),
"device_id": record.ValueByKey("device_id"),
"process_name": record.ValueByKey("process_name"),
"username": record.ValueByKey("username"),
"pid": record.ValueByKey("pid"),
"cpu_usage": record.ValueByKey("cpu_usage"),
"memory_usage": record.ValueByKey("memory_usage"),
"path": record.ValueByKey("path"),
"cmdline": record.ValueByKey("cmdline"),
"ports": record.ValueByKey("ports"),
"agent_name": record.ValueByKey("agent_name"),
}
// 添加到进程列表
processes = append(processes, processData)
}
if queryResult.Err() != nil {
return nil, queryResult.Err()
}
return processes, nil
}
// QueryDiskDetails 查询磁盘详细信息
func (s *Storage) QueryDiskDetails(ctx context.Context, deviceID string, startTime, endTime string) ([]map[string]interface{}, error) {
queryAPI := s.client.QueryAPI(s.org)
// 构建查询语句
query := `from(bucket: "` + s.bucket + `")
|> range(start: ` + startTime + `, stop: ` + endTime + `)
|> filter(fn: (r) => r["_measurement"] == "disk_details")`
// 如果指定了设备ID添加设备ID过滤
if deviceID != "" {
query += `
|> filter(fn: (r) => r["device_id"] == "` + deviceID + `")`
}
// 获取最新的磁盘详细信息
query += `
|> last()`
// 执行查询
queryResult, err := queryAPI.Query(ctx, query)
if err != nil {
return nil, err
}
defer queryResult.Close()
// 存储磁盘详细信息
diskDetails := make([]map[string]interface{}, 0)
// 处理查询结果
for queryResult.Next() {
if queryResult.TableChanged() {
// 表结构变化,跳过
continue
}
// 获取记录
record := queryResult.Record()
// 构建磁盘详细信息
diskData := map[string]interface{}{
"time": record.Time(),
"device_id": record.ValueByKey("device_id"),
"disk_id": record.ValueByKey("disk_id"),
"status": record.ValueByKey("status"),
"type": record.ValueByKey("type"),
"size_gb": record.ValueByKey("size_gb"),
"model": record.ValueByKey("model"),
"interface_type": record.ValueByKey("interface_type"),
"description": record.ValueByKey("description"),
"agent_name": record.ValueByKey("agent_name"),
}
// 添加到磁盘详细信息列表
diskDetails = append(diskDetails, diskData)
}
if queryResult.Err() != nil {
return nil, queryResult.Err()
}
return diskDetails, nil
}

Binary file not shown.

View File

@@ -254,19 +254,20 @@
</div>
</div>
<!-- 网络 状态卡片 -->
<!-- 网络流量 状态卡片 -->
<div class="bg-white rounded-xl shadow-md p-6 card-hover border border-gray-100">
<div class="flex justify-between items-start">
<div>
<p class="text-sm text-gray-500 font-medium mb-1">网络流量</p>
<h3 id="networkValue" class="text-3xl font-bold text-gray-900 metric-value">0.0</h3>
<p id="networkDetails" class="text-xs text-gray-500 mt-1">接收: 0 MB/s | 发送: 0 MB/s<br>总量: 接收 0 MB | 发送 0 MB</p>
<h3 id="networkValue" class="text-3xl font-bold text-gray-900 metric-value">0.00 ↓</h3>
<p id="networkDetails" class="text-xs text-gray-500 mt-1">接收速率 0.00 MB | 发送速率 0.00 MB<br>接收总量 0.00 MB | 发送总量 0.00 MB</p>
</div>
<div class="bg-purple-100 p-3 rounded-full">
<i class="fa fa-exchange-alt text-purple-600 text-xl"></i>
<i class="fa fa-network-wired text-purple-600 text-xl"></i>
</div>
</div>
</div>
</div>
<!-- 图表选项卡导航 -->
@@ -289,12 +290,16 @@
</button>
<!-- 网络 选项卡 -->
<button class="chart-tab px-4 py-2 text-sm font-medium text-gray-600 border-b-2 border-transparent hover:bg-gray-50 transition-colors" data-tab="network">
网络
流量
</button>
<!-- 网速 选项卡 -->
<button class="chart-tab px-4 py-2 text-sm font-medium text-gray-600 border-b-2 border-transparent hover:bg-gray-50 transition-colors" data-tab="speed">
网速
</button>
<!-- 系统日志 选项卡 -->
<button class="chart-tab px-4 py-2 text-sm font-medium text-gray-600 border-b-2 border-transparent hover:bg-gray-50 transition-colors" data-tab="logs">
系统日志
</button>
<!-- 网卡选择和刷新按钮 -->
<div id="interfaceSelectorContainer" class="flex items-center gap-1 ml-4 hidden">
@@ -315,6 +320,12 @@
<label for="autoRefreshToggle" class="toggle-label block overflow-hidden h-5 rounded-full bg-gray-300 cursor-pointer"></label>
</div>
</div>
<!-- 刷新状态指示器 -->
<div class="flex items-center gap-1 ml-4">
<div id="refreshStatusIndicator" class="w-2 h-2 bg-red-500 rounded-full animate-pulse"></div>
<span id="lastRefreshTime" class="text-xs text-gray-500">上次刷新: 刚刚</span>
</div>
</div>
<!-- 自定义时间选择 -->
@@ -333,43 +344,161 @@
<!-- CPU 图表 -->
<div id="cpuChartContainer" class="chart-container h-80">
<canvas id="cpuChart"></canvas>
<!-- 缩放控件 -->
<div class="mt-4 flex items-center justify-between">
<div class="text-sm text-gray-500">当前显示范围: <span id="cpuCurrentTimeRangeDisplay">过去1小时</span></div>
<div class="flex items-center gap-2">
<button id="cpuResetZoomBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-refresh"></i> 重置
</button>
<button id="cpuZoomOutBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-minus"></i> 缩小
</button>
<button id="cpuZoomInBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-plus"></i> 放大
</button>
</div>
</div>
</div>
<!-- 进程信息展示 -->
<div id="processInfoContainer" class="mt-8">
<h3 class="text-lg font-semibold text-gray-900 mb-4">进程信息</h3>
<div class="overflow-x-auto">
<table id="processTable" class="min-w-full bg-white rounded-lg overflow-hidden shadow-md">
<thead class="bg-gray-50">
<tr>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">进程名</th>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">用户名</th>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">进程ID</th>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">CPU (%)</th>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">内存 (%)</th>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">路径</th>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">命令行</th>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">占用端口</th>
</tr>
</thead>
<tbody id="processTableBody" class="bg-white divide-y divide-gray-200">
<!-- 进程信息将通过JavaScript动态添加 -->
</tbody>
</table>
</div>
<!-- 进程信息分页容器 -->
<div id="processPaginationContainer" class="mt-4"></div>
</div>
<!-- 内存 图表 -->
<div id="memoryChartContainer" class="chart-container h-80 hidden">
<canvas id="memoryChart"></canvas>
<!-- 缩放控件 -->
<div class="mt-4 flex items-center justify-between">
<div class="text-sm text-gray-500">当前显示范围: <span id="currentTimeRangeDisplay">过去1小时</span></div>
<div class="flex items-center gap-2">
<button id="memoryResetZoomBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-refresh"></i> 重置
</button>
<button id="memoryZoomOutBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-minus"></i> 缩小
</button>
<button id="memoryZoomInBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-plus"></i> 放大
</button>
</div>
</div>
</div>
<!-- 磁盘 图表 -->
<div id="diskChartContainer" class="chart-container h-80 hidden">
<canvas id="diskChart"></canvas>
<!-- 缩放控件 -->
<div class="mt-4 flex items-center justify-between">
<div class="text-sm text-gray-500">当前显示范围: <span id="diskCurrentTimeRangeDisplay">过去1小时</span></div>
<div class="flex items-center gap-2">
<button id="diskResetZoomBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-refresh"></i> 重置
</button>
<button id="diskZoomOutBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-minus"></i> 缩小
</button>
<button id="diskZoomInBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-plus"></i> 放大
</button>
</div>
</div>
</div>
<!-- 磁盘详细信息展示 -->
<div id="diskDetailsContainer" class="mt-8 hidden">
<h3 class="text-lg font-semibold text-gray-900 mb-4">磁盘详细信息</h3>
<div class="grid grid-cols-1 md:grid-cols-2 gap-4">
<!-- 磁盘详细信息将通过JavaScript动态添加 -->
<div id="diskDetailsContent"></div>
<!-- 磁盘信息分页容器 -->
<div id="diskPaginationContainer" class="mt-4"></div>
</div>
</div>
<!-- 网络 图表 -->
<div id="networkChartContainer" class="chart-container h-80 hidden">
<canvas id="networkChart"></canvas>
<!-- 缩放控件 -->
<div class="mt-4 flex items-center justify-between">
<div class="text-sm text-gray-500">当前显示范围: <span id="networkCurrentTimeRangeDisplay">过去1小时</span></div>
<div class="flex items-center gap-2">
<button id="networkResetZoomBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-refresh"></i> 重置
</button>
<button id="networkZoomOutBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-minus"></i> 缩小
</button>
<button id="networkZoomInBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-plus"></i> 放大
</button>
</div>
</div>
</div>
<!-- 网速 图表 -->
<div id="speedChartContainer" class="chart-container h-80 hidden">
<canvas id="speedChart"></canvas>
</div>
<!-- 缩放控件 -->
<div class="mt-6 flex items-center justify-between">
<div class="text-sm text-gray-500">当前显示范围: <span id="currentTimeRangeDisplay">过去24小时</span></div>
<div class="flex items-center gap-2">
<button id="resetZoomBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-refresh"></i> 重置
</button>
<button id="zoomOutBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-minus"></i> 缩小
</button>
<button id="zoomInBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-plus"></i> 放大
</button>
<!-- 缩放控件 -->
<div class="mt-4 flex items-center justify-between">
<div class="text-sm text-gray-500">当前显示范围: <span id="speedCurrentTimeRangeDisplay">过去1小时</span></div>
<div class="flex items-center gap-2">
<button id="speedResetZoomBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-refresh"></i> 重置
</button>
<button id="speedZoomOutBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-minus"></i> 缩小
</button>
<button id="speedZoomInBtn" class="bg-gray-100 hover:bg-gray-200 text-gray-700 px-3 py-1 rounded-lg transition-colors">
<i class="fa fa-search-plus"></i> 放大
</button>
</div>
</div>
</div>
<!-- 系统日志 图表 -->
<div id="logChartContainer" class="chart-container h-80 hidden">
<h3 class="text-lg font-semibold text-gray-900 mb-4">系统日志</h3>
<div class="overflow-x-auto">
<table id="logTable" class="min-w-full bg-white rounded-lg overflow-hidden shadow-md">
<thead class="bg-gray-50">
<tr>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">序号</th>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">来源</th>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">发生时间</th>
<th class="px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider">内容</th>
</tr>
</thead>
<tbody id="logTableBody" class="bg-white divide-y divide-gray-200">
<!-- 日志信息将通过JavaScript动态添加 -->
</tbody>
</table>
</div>
</div>
<!-- 缩放控件已移动到各个图表容器内 -->
</div>
</div>
</div>

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,98 @@
# 网络流量数据来源分析
## 数据来源
### 1. API调用
- **函数**`loadMetrics()`
- **调用方式**`fetchMetric('network')`
- **API路径**`${API_BASE_URL}/metrics/network`
- **参数**
- `start_time`: 起始时间
- `end_time`: 结束时间
- `aggregation`: 聚合方式默认为average
- `interval`: 时间区间固定为10m
### 2. WebSocket实时更新
- **函数**`handleMetricsUpdate(message)`
- **消息类型**`metrics_update`
- **数据结构**
```json
{
"type": "metrics_update",
"device_id": "device_id",
"metrics": {
"network": {...}
}
}
```
## 数据处理流程
### 1. 数据格式化
- **函数**`formatNetworkDataForCards(networkData)`
- **作用**将API或WebSocket返回的原始网络数据格式化为状态卡片可用的格式
- **处理逻辑**
- 初始化返回数据结构,包含发送速率、接收速率、发送总量、接收总量
- 根据数据类型(数组或对象)进行不同处理
- **遍历所有网卡**,累加所有网卡的流量数据
- 支持多种数据格式包括数组格式、WebSocket消息格式、按网卡分组的数据格式
- 支持旧格式的总量数据bytes_sent_total, bytes_received_total
### 2. 数据更新
- **函数**`_updateStatusCards(metrics)`
- **作用**:更新状态卡片的显示内容
- **网络流量卡片更新逻辑**
- 解析网络数据,获取发送速率、接收速率、发送总量、接收总量
- 计算接收速率/发送速率的比值,根据比值显示箭头
- 使用`formatBytes`函数格式化速率和总量自动处理MB和GB的转换
- 更新DOM元素显示比值、速率和总量
## 显示内容
### 1. 大数字显示
- **内容**:接收速率/发送速率的比值
- **逻辑**
- 如果接收速率和发送速率都为0显示无穷符号
- 如果发送速率为0接收速率不为0显示无穷符号和↓
- 如果接收速率为0发送速率不为0显示0和↑
- 正常情况:计算比值,显示比值和箭头(比值>1显示↓否则显示↑
### 2. 速率显示
- **格式**:接收速率 MB/s | 发送速率 MB/s
- **处理**:使用`formatBytes`函数格式化自动处理MB/s和GB/s的转换
### 3. 总量显示
- **格式**:接收总量 MB | 发送总量 MB
- **处理**:使用`formatBytes`函数格式化自动处理MB和GB的转换
## 正确性验证
### 1. 网卡总流量
- `formatNetworkDataForCards`函数会遍历所有网卡,累加所有网卡的流量数据
- 这样显示的是所有网卡的总流量信息,符合用户需求
### 2. 数据类型转换
- `formatBytes`函数会根据数据大小自动转换为合适的单位MB或GB
- 速率显示带有正确的单位MB/s或GB/s
- 总量显示带有正确的单位MB或GB
### 3. 边界情况处理
- 处理了接收速率和发送速率都为0的情况
- 处理了发送速率为0接收速率不为0的情况
- 处理了接收速率为0发送速率不为0的情况
## 代码优化
### 1. 已完成的优化
- 使用`formatBytes`函数格式化流量数据自动处理MB和GB的转换
- 确保显示的是所有网卡的总流量信息
- 处理了各种边界情况
### 2. 优化效果
- 显示内容更准确,带有正确的单位
- 自动适应数据大小,提高可读性
- 处理了各种边界情况,避免显示错误
## 结论
网络流量卡片的数据来源是可靠的通过API调用或WebSocket实时更新获取原始数据经过`formatNetworkDataForCards`函数格式化处理后,显示的是所有网卡的总流量信息。使用`formatBytes`函数格式化后显示内容带有正确的单位并且会根据数据大小自动转换为合适的单位MB或GB提高了数据的可读性。

View File

@@ -1,10 +0,0 @@
{
"server_url": "http://localhost:8080/api",
"id": "test-agent",
"name": "Test Agent",
"device_id": "test-device",
"token": "bb30bfaee01bf7b541bbefe422f72645",
"interval": "5s",
"debug": true,
"api_port": 8081
}

View File

@@ -1,11 +0,0 @@
#!/bin/bash
# 测试发送单个指标对象
echo "测试发送单个指标对象:"
curl -v -X POST -H "Content-Type: application/json" -H "X-Device-ID: test-device" -H "X-Agent-Name: test-agent" -H "X-Device-Token: test-token" -d '{"cpu": 50.5, "memory": 30.2, "disk": {":/": 45.6}, "network": {"eth0": {"bytes_sent": 1000, "bytes_received": 2000}}}' http://localhost:8080/api/metrics/
echo "\n---\n"
# 测试发送指标数组
echo "测试发送指标数组:"
curl -v -X POST -H "Content-Type: application/json" -H "X-Device-ID: test-device" -H "X-Agent-Name: test-agent" -H "X-Device-Token: test-token" -d '[{"cpu": 50.5, "memory": 30.2, "disk": {":/": 45.6}, "network": {"eth0": {"bytes_sent": 1000, "bytes_received": 2000}}}, {"cpu": 60.5, "memory": 40.2, "disk": {":/": 55.6}, "network": {"eth0": {"bytes_sent": 2000, "bytes_received": 3000}}}]' http://localhost:8080/api/metrics/